Team 22: Autonomous Ground Vehicle Design for Intelligent Ground Vehicle Competition

Midterm Presentation 1

FAMU/FSU FIT

Allegra Nichols
Dalton Hendrix
Julian Wilson
Khoury Styles
Isaac Ogunrinde
Jaymeen Joshi
Adrian Zhanda
Roger Ballard
Will Nyffenegger
Pulkit Aggarwal

Sponsor: Aero-Propulsion Mechatronics and Energy Center

Advisor: Dr. Nikhil Gupta

February 18, 2016

Overview

- Introduction
 - Intelligent Ground Vehicle Competition
 - Competition Objectives
 - Design Constraints
- Team Dynamics
- Challenges
- Work Distribution
- Prototype Design
 - Electrical Design Concepts
 - Mechanical Design Concepts
- Budget Breakdown
- Conclusion/Future Work

Intelligent Ground Vehicle Competition (IGVC)

- Annual design competition held by Oakland
 University in Rochester, Michigan since in 1992
 - This years competition is June 3rd
- Provides hands on experience
- Focuses on latest technological
- advancements
- Team development
- Inside view of industrial design
 - Team members in remote locations
 - Communication

An autonomous vehicle competing in the IGVC

Competition Objectives

The AGVs are required to navigate an outdoor obstacle course that is recycled

every 3 years

- under 15 minutes
- Within speed restrictions
 - (1~5 mph)
- Remain in lane
- Waypoint Identification
- Avoid Obstacles

Layout of 2013 IGVC basic course

Presenter: Julian Wilson

Ę

Design Constraints

Dimension:

• Length: 3~7 ft.

• Width: 2~4 ft.

• Height max: 6 ft.

On board Battery Power

1 ~ 5 mph speed

On Board and Wireless Emergency Push Stop

Safety light

Payload: 20lb (18" x 8" x 8")

Team Dynamics

- Multidisciplinary Cross-Collaboration
- FAMU-FSU College of Engineering (COE)
- Junior FIT Team (Melbourne, FL)
 - 2 year project
- Working toward the common goal of qualifying and competing in IGVC
- Biggest challenge is communication

AGV attempting to avoid an obstacle

Challenges

- Starting from scratch
- FAMU/FSU-FIT Collaboration
 - Distance teamwork
 - Meshing Computer/Electrical and Mechanical Engineers
 - Coming to sound decisions
- Familiarizing with unexplored technologies
- Availability of Products
- Time Constraints

Presenter: Julian Wilson

Work Distribution

FAMU/FSU

- Structure Fabrication
- Vehicle Speed Control
 - Maintain speeds of 1~5 mph
- Emergency Stops
 - Wireless and Mechanical
- Battery Selection

FIT

- GPS Waypoint Navigation
- Vehicle Perception
 - PixyCam
 - NVidia Jetson
 - Project Tango

a

Vehicle Prototype

- Structure from 2"x4" boards and 1/8" plywood
- Components can be mounted with ease
- Allows the frame to be fine-tuned before aluminum frame is machined

COE Electrical Design

- Block Diagram
- Fail safe Mechanism
 - RP Lidar
- Power
- Wireless Emergency Stop
 - Xbee

NI MyRio (above) and Raspberry Pi 2 B+ (below)

Fail Safe Mechanism

RPLidar

- Emitted modulated infrared laser signal is reflected by the object to be detected
- Built-In vision acquisition will sample the returning signal
- Embedded DSP will process the sample data using a start flag, quality.
- Distance value and an angle value between the object and the LIDAR will be outputted to a 2D plot

RPLidar Testing Scan 1

Real-world view of original room

2D plot of real-world view of original room

Presenter: Allegra Nichols

RPLidar Testing Scan 2

Real-world view of room with obstacle

2D plot of real-world view of room with obstacle

Presenter: Allegra Nichols

15

Y = Distance *sind(Angle)

3D MatLab verification analysis of original room

2D MatLab verification analysis of room with obstacle

Presenter: Allegra Nichols

2

Power

Safety Concerns

- Overcharge
- Over-discharge
- Short-Circuit
- Over Temperature

Lithium Ion Polymer Batteries

- More resistant to overcharge.
- Lower rate of self-discharge
 - Stored Charge of the battery is decreased at a lower rate.
 - Increased shelf-life

Distribution:

Motor: 12 V ~ 15 V

Cooling Fans: 12 V

• myRIO: 6 V ~ 16 V

Competition Constraint

No combustion engines

Power

SeaVax Lithium Polyemer 12V Battery

4 hours of operating time

Rechargeable

Built-In ON/OFF switch for power save

Weight: 340g (0.75 lbs)

Capacity: 9800 mAh (9.8 Ah)

Type: DC

Input voltage: 12.6 V

Output voltage: 10.8 V ~ 12.6 V

2A constant draw current (~48 W power)

SeaVax Lithium Polymer 12 V Battery

22

Emergency Stop Device

Xbee 802.15.4

- Multipoint wireless networking RF
- 2.4 GHz operating frequency
- 300 ft. range
- 45mA transmit current, 50 mA receive current
- 3.3 operating voltage
- 250k bps
- -92 dBm receiver sensitivity

Emergency Stop Connection Diagram

COE Mechanical Design

- Evolution of Frame Design
- Open Loop Speed Control Setup
- Components of Speed Control Setup
- Speed Control Testing
- Speed Control Analysis

PG27 gear motor (above) and Pololu Motor Controller (below)

Evolution of Frame Design

Open Loop Speed Control Setup

Components of Speed Control Setup

Microcontroller – NI Myrio

- Connects to the motor controller serially.
- Communicates to the motor-controller via Universal Asynchronous Receiver and Transmitter (UART).

Motor controller

- Has a variable baud rate (rate of signal change per secs) of 9600.
- Has a Pulse Width Modulation (PWM) of 21.77kHz

Encoder

Has 7 pulses per revolution and it's quadrature, equivalent to 28counts/revolution.

Motor

- Gear box reduction ratio is 26.9:1
- 1 revolution of the motor equals 753 counts of the encoder

Voltage supplier – supplies 12 volt.

Speed Control Testing

Pololu simple motor control (SPM) center

- Use one of geared motor for the testing.
- Use Pololu SPM center to rotate the motor.
- Set speed is in range of –ve and +ve 100%.

Speed Control Analysis

Speed Control Analysis

Budget Break Down

Part	Quantity	Unit Price	Total	Vendor
Polulu Simple High-Power Motor Controller 18v25 (1381)	3	54.95	164.85	Polulu
Mighty - Lite Caster Wheels (2835T31)	3	10.2	30.6	McMaster-Carr
Flat-Free Lightweight Polyurethane Wheel (22245T31)	3	47.64	142.92	McMaster-Carr
Raspberry Pi B+ (70377493)	2	30	60	Allied Electronics
PG27 Gearmotor w/ RS775 Motor & Encoder (am-2923)	3	85	255	AndyMark
Xbee 802.15.4 Modules	2	19	38	Digi
RPLidar 360	1	0	0	FAMU/FSU CoE
NI MyRio 1900	1	0	0	FAMU/FSU CoE
1" Al sq tubing 1/8" wall	1	164.64	164.64	McMaster-Carr
1/8 " aluminum Sheet	3	79.97	239.91	McMaster-Carr
Batteries	4	50	200	
Low-Carbon Steel Rod 1/2" Diam., 1' Length	1	3.09	3.09	McMaster-Carr
Low-Carbon Steel Rod 3/4" Diameter, 1' Length	1	6.94	6.94	McMaster-Carr
Low-Carbon Steel Rod 1-1/2" Diameter, 1' Length	1	22.61	22.61	McMaster-Carr

Total Budget	Spent	Remaining
3000	1295.92	1704.08

Gantt Chart

Gantt Chart

Conclusion/Future Plans

Conclusion

- Component ordering has been completed
- Wooden prototype fabrication
- Testing
 - Motor movement (forward/ reverse)
 - Obstacle Detection

Future Plans

- Resolve frequency issues between motor controller and MyRio
- Integrate speed control with 2 motors
- Prototype testing
 - Integrate vehicle movements with Lidar system
- Full electrical integration with prototype
- Bi-weekly conference calls with FIT
 - Collaborative updates

Reference

- 1. http://www.igvc.org/objective.html
- 2. http://www.igvc.org/2016IGVCRules.pdf
- 3. http://www.robotmarketplace.com/products/AME-210-1012.html
- 4. https://www.pololu.com/product/1381
- 5. https://www.sparkfun.com/products/13680

Questions?

Decision Matrices

Steering	Base	Control	Feasability	Speed	Total
Differential Steering	0	7	7	7	21
Skid Steering	0	7	5	5	17
Tank Tread	0	5	3	3	11
Steering Fans	0	3	3	5	11
Ackerman Steering	0	5	0	5	10

Body Structure	Base	Manufacturability	Weight	Availability	Total
Tubing Frame	0	7	5	7	19
Sheet Material	0	7	5	5	17
3D Printed	0	5	5	3	13
Hovercraft	0	3	7	5	15

Materials	Base	Machinability	Density	Availability	Total
4130 Steel	0	7	3	5	15
Aluminum 6061	0	7	5	7	19
ABS Plastic	0	5	7	5	17
Wood	0	5	7	5	17

	•		N #	. •
116		MOI	11/1つ1	tricoc
DC			ivia	trices

Processor	Base	Power Consumption	Processor Speed	Memory	Total
NI MyRio 1900	0	5	5	5	15
Raspberry PI 2	0	5	7	7	19
Arduino	0	5	3	3	11
MSP430	0	5	3	3	11

Sensor	Base	Accuracy	Range	Speed	Total
Infrared	0	5	0	5	10
Ultrasonic	0	3	5	7	15
Radar	0	3	5	5	13
Lidar	0	7	7	7	21

Vision	Base	Resolution	Intigration	Accuracy	Total
Pixi Cam	0	7	7	5	19
USB Camcorder	0	5	3	5	13

Power	Base	Capacity	Voltage	Weight	Total
Lead Acid	0	7	5	5	17
Lithium Ion	0	7	7	7	21
Nickel-Metal Hybrids	0	7	5	5	17
Lithium Polymer	0	7	5	3	15

RPLidar Scan 1 Data

		Sheet1			Sheet1
			53.1875	652.8	26
#RPLIDAR	SCAN	DATA	54.25	651.3	26
#COUNT=292			55.4219	651	26
Angle (Degrees)	Distance (mm)	Quality	56.5313	650	30
0.4219	918.8	14	57.625	652	41
1.5	897	12	58.6563	650	28
2.6406	863.5	14	59.7656	650.5	26
5.0469	812.3	15	61	651.8	28
6.1719	794	15	62.0313	654.8	25
7.2969	776	16	63.1875	655.5	24
8.5156	764.5	14	64.2656	655.5	23
9.6094	739.3	13	65.4375	656.5	23
10.7969	719.5	17	66.625	657.5	22
11.9531	704.5 687	15 15	67.7031	661.8	21
13.1719	674	18	68.8594	661.8	19
14.3281			69.8594	666	21
15.3906	660.8 648.5	17 17	71.0469	672.3	23
16.7031			72.1875	674.5	23
17.7813	639.3	23	73.125	677	21
18.7344	629.3	20	74.1875	682.5	20
19.8594	616.3	21	75.3125	686.5	18
21.2188	606.8	16	76.5125 76.5156	690.8	23
22.2031	622.5 638.3	24 17	76.5156 77.5	690.8 697	23 21
23.2656		17	77.5 78.6406	701.8	20
24.1563 25.3281	659.8 675.3	14	78.6406 79.7813	701.8 707	20 17
	675.3 698.3	9			20
26.2813 27.2813	751.8	9 20	80.8281 82.0625	713.5	21
28.3906	742.3	20 19		719.5 725.8	∠ i 19
29.5	742.3	19	83.125 84.125	725.6 734.3	19
30.6406	737	16			
31.7969	720.8	19	85.3281 86.4531	740.8 748.5	21 19
32.9688	716	20	87.4531	748.5 761	18
34.0156	709.3	19			
35.25	702.8	22	88.4844	772.8	17
36.25	696.8	22	89.7188	778.8	19
37.5156	691	22	90.8125	789	20
38.5781	686.8	21	91.9219	797	17
39.7188	681	21	92.875	808.8	16
40.7656	677.8	22	94.0938	821.3	19
42.0156	675.5	22	95.1406	831.8	18
43.0781	668.5	21	96.2188	846.3	19
44.2188	667.8	20	97.25	858	16
45.2344	663.8	21	98.4375	875.3	19
46.4688	660.5	20	99.5	885.3	16
47.6406	659.5	22	100.625	909	19
48.625	657.5	22	101.625	924.3	16
49.8438	655.5	24	102.8125	945.5	16
51	654.5	25	103.8125	968.3	16
52.0469	651.8	24	104.9219	980.5	15
			106	1006.8	17
		Page 1			
		rage i			Page 2
					_